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SUMMARY: The diastereo- and/or enantioselection are described in the 

Technology, 

title rearrangement of 

the chiral 2-(2-alkenyloxy)methyl 2-oxazolines which eventually provides optically 

active a-hydroxy y,b-unsaturated esters and (+)-verrucarinolactone. 

The control of both diastereo- and enantioselection during carbon-carbon bond formations 

is of great importance in synthesis. Recently remarkable success has been reached in aldol-type 

reactions using properly designed chiral enolates.' In a continuing effort to develop the 

[2,3]Wittig sigmatropic rearrangement into a new, general strategy for acyclic stereocontrol, 

we were interested in the asymmetric [2,3]Wittig process which involved a chiral enolate as the 

migrating terminus (eq 1). We now report the first example of this type of asymmetric sigma- 

tropic rearrangement that exhibits a high degree of both diastereo- and enantioselection. 
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For this study was selected Meyers' chiral oxazoline ring3 as the key chiral auxiliary 

(Gc*). Thus, we studied the [2,3]Wittig process of the three chiral oxazolines (l~-~_),~ 

which eventually afforded thechiral a-hydroxy esters (2) (Scheme 1). The rearrangement was 

carried out by using butyllithium or lithium diisopropylamide (LDA) as the base in THF at 

-85 "C, stirring for 3-5 h, and quenching with brine. Usual workup afforded an essentially 

quantitative yield of the rearranged product (L) which was converted to the hydroxy ester (2) 

via hydrolysis (3N H2S04) followed by treatment with diazomethane. The three-step sequence 

from A was carried out without purification of intermediates. Table 1 summarizes the results. 
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Scheme 1 
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The assignment of the absolute configuration to the hydroxy esters2 deserves comments. 

Ester 2 (entry 1) was hydrogenated to (-)-Awhich was correlated to (-)-@)-A ([a]:' -12.5" 

(CHC13)) derived from D-norvaline via nitrous acid oxidation. In order to assign the absolute 

configuration to erythro-3k (major diastereomer), 2 (entry 3) was converted to verrucarino- 

lactone (5_) according to Roush's four-step procedure.5 Recrystallization from ether gave 

stereochemically pure (2FJ, 35)-k (mp 103-104 "C [lit.,6a 103 "Cl; [a)A6 +13.8" (c 0.69, CHC13)), 

as judged from the highest literature value ([a]:' -10.4" (CHC13)) reported for (22, 3J)-L6 

On the other hand, threo-3$ (minor diastereomer) was separated from the diastereomixture 

(entry 4) by preparative GLC and hydrogenated to (+)-Awhich was correlated to (+)-(22, 3S)-z 

( M;g +29.3"(CHC13)) prepared from L-isoleucine via nitrous acid oxidation. 

1, . H”+ C02CH3 

oFJ3 /JC",:,,, 

0 

(R)-(-)-: (ZTJ, 3s)-(+)-A (25, 3S)-(+)-$ 

Several significant trends are evident from the data in Table 1. (1) Butyllithium is 

superior to LDA as the base. (2) The present rearrangement exhibits a preference for the (R_)- 

configuration at C-2 of&in general, the degree depending markedly on the methyl-substitution 

pattern on the allylic moiety. (3) Particularly noteworthy is the rearrangement of E (entry 3) 

which provides a dramatically enhanced enantioselectivity (78% ee) along with a high erythro- 
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Table 1. The Chiral a-Hydroxy Esters (3J via Rearrangement of J, 

Entry Substrate Base Erythro : Threoa % eeb ConfigurationC 

1 '2 n-BuLi 384 R - - 

2 '2 LDA 144 R - 

3 lj& (93% E) n-BuLi 90 : 10 

( 

Erythro 78 2R, 3s 

Threo 8 25, 3s - 

4 lb (93% C) LDA 84 : 16 

i 

Erythro 64 2E, 3s 

Threo 28 25, 3s _ 

5 lc n-BuLi 75 - (RF= 

a: Determined by GLC and NMR assays as described in ref Zc. b: Determined by NMR analysis - 

using (+)-Eu(DPPM), as the chiral shift reagent which was provided by Prof. N. Ishikawa: 

cf. H. Kawa, et al., Chem. Lett., 1982, 153. - The NMR analysis of 3,b was done without 

separation of the diastereomers; the CH,O-signal was separated to four signals. 

C: Unless specifically noted in the text, - the configuration was assigned by similarity in 

shifts using the chiral shift reagent. d: Refers to the Z ee for the cr-methoxy ester of 2. 

e: Assigned only by assuming the same sense of enantioselection as observed for 2. - 

selectivity (90%). (4) The rearrangement of L also shows a comparably high level of enantio- 

selection. Thus, these findings reveal that the added methyl group(s) on the allylic moiety 

appears to exert a great influence in dictating the enantioselectivity. 

Although these trends have no definitive explanations owing to the complexities of this 

process, the observed sense of enantioselection is reasonably interpreted as the result that 

the enolization leads to the metal-chelated (Z_)-enolate7(see formula Adepicted below) which 

undergoes the [2,3]-shift preferentially from the bottomside (re-face). The great enhancement - 

in % ee by changing the migrating group from ally1 (2) to (Q-crotyl (s) (or prenyl (l&) 

might be rationalized in terms of a steric interaction between the crotyl-methyl and the phenyl 

which substantially depresses occurrence of the topside (si-face) rearrangement. Thus, both - 

the high erythro- and enantioselectivity observed for 2 can be visualized by the transition 

state i(R=CH3p with the oxazoline ring at the pseudo-axial position and the methoxymethyl 

&jh_ ,zJY3 e (2R)_erythro 

A CH3 H B 
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group at there-face. - Further efforts are in progress to probe this interesting process and 

to examine [2,3]Wittig rearrangements involving different chiral enolates. 
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